Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Physiol Rep ; 11(1): e15560, 2023 01.
Article in English | MEDLINE | ID: covidwho-2204043

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit acute and long-term effects on the myocardium among survivors, yet effects among otherwise healthy young adults remains unclear. Young adults with mild symptoms of SARS-CoV-2 (8M/8F, age: 21 ± 1 years, BMI: 23.5 ± 3.1 kg·m-2 ) underwent monthly transthoracic echocardiography (TTE) and testing of circulating cardiac troponin-I for months 1-6 (M1-M6) following a positive polymerase chain reaction test to better understand the acute effects and post-acute sequelae of SARS-CoV-2 on cardiac structure and function. Left heart structure and ejection fraction were unaltered from M1-M6 (p > 0.05). While most parameters of septal and lateral wall velocities, mitral and tricuspid valve, and pulmonary vein (PV) were unaltered from M1-M6 (p > 0.05), lateral wall s' wave velocity increased (M1: 0.113 ± 0.019 m·s-1 , M6: 0.135 ± 0.022 m·s-1 , p = 0.013); PV S wave velocity increased (M1: 0.596 ± 0.099 m·s-1 , M6: 0.824 ± 0.118 m·s-1 , p < 0.001); the difference between PV A wave and mitral valve (MV) A wave durations decreased (M1: 39.139 ± 43.715 ms, M6: 18.037 ± 7.227 ms, p = 0.002); the ratio of PV A duration to MV A duration increased (M1: 0.844 ± 0.205, M6: 1.013 ± 0.132, p = 0.013); and cardiac troponin-I levels decreased (M1: 0.38 ± 0.20 ng·ml-1 , M3: 0.28 ± 0.34 ng·ml-1 , M6: 0.29 ± 0.16 ng·ml-1 ; p = 0.002) over time. While young adults with mild symptoms of SARS-CoV-2 lacked changes to cardiac structure, the subclinical improvements to cardiac function and reduced inflammatory marker of cardiac troponin-I over 6 months following SARS-CoV-2 infection provide physiologic guidance to post-acute sequelae and recovery from SARS-CoV-2 and its variants using conventional TTE.


Subject(s)
COVID-19 , Humans , Young Adult , Adult , SARS-CoV-2 , Troponin I , Echocardiography , Heart
2.
Int J Gen Med ; 15: 7113-7121, 2022.
Article in English | MEDLINE | ID: covidwho-2029862

ABSTRACT

Objective: Critical covid-19 patients have complications with acute myocardial injury is still unclear. We observed a series of critically ill patients, paying particular attention to the impact of myocardial injury at admission on short-term outcome. Methods: We prospectively collected and analyzed data from a series of severe covid-19 patients confirmed by real-time RT-PCR. Data were obtained from electronic medical records including clinical charts, nursing records, laboratory findings, and chest x-rays were from Feb 8, 2020, to April 7, 2020. The Acute Physiology and Chronic Health Evaluation (APACHE II) score, CURB-65 Pneumonia Severity Score, Sequential Organ Failure Assessment (SOFA) Score and pneumonia severity index (PSI) score were made within 24 hours of admission. Cardiac injury was diagnosed as hs-cTnI were above >28 pg/mL. The short-term outcome was defined as mortality in hospital. Results: A total of 100 patients met the diagnostic criteria of severe patients with COVID-19 during 2020.02.08-2020.04.07. The CURB 65, APACH2, SOFA, and PSI score were significantly higher in Critical group than in Severe group. Univariate regression analysis showed that oxygen flow, PO2/FiO2, SOFA and hs-cTnI were closely related to short-term outcome. The corresponding ROC of hs-cTnI, oxygen flow and SOFA for patient death prediction were 0.949, 0.906 and 0.652. hs-cTnI at 47.8 ng/liter predicted death, sensitivity 92.8%, specificity 92.9%; Oxygen flow at 5.5 liter/minute predicted death sensitivity 100%, specificity 77.9%; SOFA score at 5 predicted death sensitivity 100%, specificity 73.8%. Conclusion: Our cohort study demonstrated that inhaled oxygen flow, SOFA score, and myocardial injury at admission in critically ill COVID-19 patients were important indicators for predicting short-term death of patients, the hs-cTnI can be as a risk stratification, which may provide a simple method for the physicians to identify high-risk patients and give reasonable treatment in time.

3.
Front Cardiovasc Med ; 8: 757799, 2021.
Article in English | MEDLINE | ID: covidwho-1555742

ABSTRACT

Objective: Cardiac injury is detected in numerous patients with coronavirus disease 2019 (COVID-19) and has been demonstrated to be closely related to poor outcomes. However, an optimal cardiac biomarker for predicting COVID-19 prognosis has not been identified. Methods: The PubMed, Web of Science, and Embase databases were searched for published articles between December 1, 2019 and September 8, 2021. Eligible studies that examined the anomalies of different cardiac biomarkers in patients with COVID-19 were included. The prevalence and odds ratios (ORs) were extracted. Summary estimates and the corresponding 95% confidence intervals (95% CIs) were obtained through meta-analyses. Results: A total of 63 studies, with 64,319 patients with COVID-19, were enrolled in this meta-analysis. The prevalence of elevated cardiac troponin I (cTnI) and myoglobin (Mb) in the general population with COVID-19 was 22.9 (19-27%) and 13.5% (10.6-16.4%), respectively. However, the presence of elevated Mb was more common than elevated cTnI in patients with severe COVID-19 [37.7 (23.3-52.1%) vs.30.7% (24.7-37.1%)]. Moreover, compared with cTnI, the elevation of Mb also demonstrated tendency of higher correlation with case-severity rate (Mb, r = 13.9 vs. cTnI, r = 3.93) and case-fatality rate (Mb, r = 15.42 vs. cTnI, r = 3.04). Notably, elevated Mb level was also associated with higher odds of severe illness [Mb, OR = 13.75 (10.2-18.54) vs. cTnI, OR = 7.06 (3.94-12.65)] and mortality [Mb, OR = 13.49 (9.3-19.58) vs. cTnI, OR = 7.75 (4.4-13.66)] than cTnI. Conclusions: Patients with COVID-19 and elevated Mb levels are at significantly higher risk of severe disease and mortality. Elevation of Mb may serve as a marker for predicting COVID-19-related adverse outcomes. Prospero Registration Number: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020175133, CRD42020175133.

4.
Biosens Bioelectron ; 198: 113823, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1520727

ABSTRACT

Direct in situ fluorescent enzyme-linked immunosorbent assay (ELISA) is rarely investigated and reported. Herein, a direct in situ high-performance HRP-labeled fluorescent immunoassay platform was constructed. The platform was developed based on a rapid in situ fluorogenic reaction between Polyethyleneimine (PEI) and p-Phenylenediamine (PPD) analogues to generate fluorescent copolymer nanoparticles (FCNPs). The formation mechanism of FCNPs was found to be the oxidation of •OH radicals, which was further proved by nitrogen protection and scavenger of •OH radicals. Meantime, the fluorescence wavelength of FCNPs could be adjusted from 471 to 512 nm by introducing various substitution groups into the PPD structure. Using cardiac troponin I (cTnI) and SARS-CoV-2 nucleocapsid protein (N-protein) as the model antigens, the proposed fluorescent ELISA exhibited a wide dynamic range of 5-180 ng/mL and a low limit of detection (LOD) of 0.19 ng/mL for cTnI, and dynamic range of 0-120 ng/mL and a LOD of 0.33 ng/mL for SARS-CoV-2 N protein, respectively. Noteworthy, the proposed method was successful applied to evaluate the cTnI and SARS-CoV-2 N protein levels in serum with satisfied results. Therefore, the proposed platform paved ways for developing novel fluorescence-based HRP-labeled ELISA technologies and broadening biomarker related clinical diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , Enzyme-Linked Immunosorbent Assay , Horseradish Peroxidase , Humans , Immunoassay , Nucleocapsid Proteins , SARS-CoV-2 , Troponin I
5.
Clin Res Cardiol ; 111(3): 343-354, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1516853

ABSTRACT

BACKGROUND: COVID-19 has been associated with a high prevalence of myocardial injury and increased cardiovascular morbidity. Copeptin, a marker of vasopressin release, has been previously established as a risk marker in both infectious and cardiovascular disease. METHODS: This prospective, observational study of patients with laboratory-confirmed COVID-19 infection was conducted from June 6th to November 26th, 2020 in a tertiary care hospital. Copeptin and high-sensitive cardiac troponin I (hs-cTnI) levels on admission were collected and tested for their association with the primary composite endpoint of ICU admission or 28-day mortality. RESULTS: A total of 213 eligible patients with COVID-19 were included of whom 55 (25.8%) reached the primary endpoint. Median levels of copeptin and hs-cTnI at admission were significantly higher in patients with an adverse outcome (Copeptin 29.6 pmol/L, [IQR, 16.2-77.8] vs 17.2 pmol/L [IQR, 7.4-41.0] and hs-cTnI 22.8 ng/L [IQR, 11.5-97.5] vs 10.2 ng/L [5.5-23.1], P < 0.001 respectively). ROC analysis demonstrated an optimal cut-off of 19.3 pmol/L for copeptin and 16.8 ng/L for hs-cTnI and an increase of either biomarker was significantly associated with the primary endpoint. The combination of raised hs-cTnI and copeptin yielded a superior prognostic value to individual measurement of biomarkers and was a strong prognostic marker upon multivariable logistic regression analysis (OR 4.274 [95% CI, 1.995-9.154], P < 0.001). Addition of copeptin and hs-cTnI to established risk models improved C-statistics and net reclassification indices. CONCLUSION: The combination of raised copeptin and hs-cTnI upon admission is an independent predictor of ICU admission or 28-day mortality in hospitalized patients with COVID-19.


Subject(s)
COVID-19/blood , COVID-19/mortality , Glycopeptides/blood , Patient Admission/statistics & numerical data , Troponin I/blood , Aged , Biomarkers/blood , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , ROC Curve , SARS-CoV-2
6.
Genes (Basel) ; 12(7)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1314613

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a rare genetic disease that affects the musculoskeletal system, including the heart, causing rhythm disorders and cardiomyopathy, sometimes requiring an implantable cardioverter-defibrillator (ICD) or heart transplantation due to severe heart damage. The case described herein concerns a 16-year-old girl, with grade II obesity, without other known pathological antecedents or cardiac pathology diagnosis given an annual history of cardiological investigations. She was admitted to the Infectious Diseases Department with SARS-CoV-2 virus infection. The anamnesis showed that the cardiological investigations performed in the past were completed due to the medical history antecedents of her sister, who had been diagnosed with dilated cardiomyopathy, having undergone the placement of an ICD and a heart transplant. Numerous investigations were performed during hospitalization, which revealed high levels of high-sensitive cardiac troponin I (hs-cTnI), creatine kinase (CK) and N-terminal pro b-type natriuretic peptide (NT-proBNP). Dynamic electrocardiographic evaluations showed ventricular extrasystoles, without clinical manifestations. The patient presented stage 2 arterial hypertension (AHT) during hospitalization. A cardiac ultrasound was also performed, which revealed suspected mild subacute viral myocarditis with cardiomyopathy, and antihypertensive medication was initiated. A heart MRI was performed, and the patient was diagnosed with dilated cardiomyopathy, refuting the suspicion of viral subacute myocarditis. After discharge, as the patient developed gait disorders with an impossible heel strike upon walking and limitation of the extension of the arms and ankles, was hospitalized in the Neurology Department. Electrocardiograms (ECGs) were dynamically performed, and because the rhythm disorders persisted, the patient was transferred to the Cardiology Department. On Holter monitoring, non-sustained ventricular tachycardia (NSVT) was detected, so antiarrhythmic treatment was initiated, and placement of an ICD was subsequently decided and was diagnosed with EDMD. Genetic tests were also performed, and a mutation of the lamin A/C gene was detected (LMNA gene exon 2, variant c448A > C (p.Thr150pro), heterozygous form, AD).


Subject(s)
COVID-19 , Cardiomyopathy, Dilated , Muscular Dystrophy, Emery-Dreifuss , SARS-CoV-2/metabolism , Adolescent , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Cardiomyopathy, Dilated/blood , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/therapy , Female , Humans , Muscular Dystrophy, Emery-Dreifuss/blood , Muscular Dystrophy, Emery-Dreifuss/diagnostic imaging , Muscular Dystrophy, Emery-Dreifuss/physiopathology , Muscular Dystrophy, Emery-Dreifuss/therapy
7.
Biosens Bioelectron ; 192: 113482, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1293596

ABSTRACT

The accurate assay of cardiac troponin I (cTnI) is very important for acute myocardial infarction (AMI), it also can be employed as an effective index for screening serious patients in COVID-19 pandemic before fatal heart injury to reduce the mortality. A ratiometric sensing strategy was proposed based on electrochemiluminescent (ECL) signal of doxorubicin (Dox)-luminol or the electrochemical (EC) signal of methylene blue (MB) vs. referable EC signal of Dox. The bio-recognitive Tro4-aptamer ensures the high specificity of the sensor by affinity binding to catch cTnI, and the tetrahedral DNA (TDs) on Au/Ti3C2-MXene built an excellent sensing matrix. An in situ hybrid chain reaction (HCR) amplification greatly improved the sensitivity. The ratiometric sensing responses ECLDox-luminol/CurrentDox or CurrentMB/CurrentDox linearly regressed to cTnI concentration in the range of 0.1 fM-1 pM or 0.1 fM-500 fM with the limit of detection (LOD) as 0.04 fM or 0.1 fM, respectively. Served as the reference signal, CurrentDox reflected the variation of sensor, it is very effective to ensure the accuracy of detection to obviate the false results. The proposed biosensors show good specificity, sensitivity, reproducibility and stability, have been applied to determine cTnI in real samples with satisfactory results. They are worth looking forward to be used for screening serious patient of COVID-19 to reduce the mortality, especially in mobile cabin hospital.


Subject(s)
Biosensing Techniques , COVID-19 , Troponin I/analysis , COVID-19/diagnosis , Electrochemical Techniques , Humans , Pandemics , Reproducibility of Results , Titanium
8.
Cureus ; 13(3): e14061, 2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1196121

ABSTRACT

Introduction The COVID-19 (coronavirus disease) has affected millions of people, wreaking havoc worldwide. World Health Organization (WHO) labelled this disease as a serious threat to public health since its rapid spread from Wuhan, China. The respiratory manifestations of COVID-19 are common, but myocardium involvement causing myocardial injury and rise in cardiac markers is much less discussed. Materials and methods We conducted this retrospective cohort study from 1st April 2020 to 1st October 2020. Data was collected from the Hospital Management and Information System (HMIS) based on inclusion criteria. We used the Cox proportional hazard regression model for survival analysis, estimated the probability curves of survival using the Kaplan-Meier method, and contrasted it with the log-rank test. Results Among the 466 patients, 280 (69%) were male; the rest were female. The majority were both hypertensive and diabetic, and one-third had a myocardial injury on arrival. The most frequent symptoms in more than half of the patients (51.90%) included a combination of fever, dry cough, and shortness of breath. Out of 466 patients, 266 patients were discharged, and 200 did not survive. In our study, 168 (36.05%) patients had a cardiac injury; among them, 38 (22.61%) were in the discharge group, and the remaining 130 (77.39%) patients were in the nonsurvivor group. Our study results showed that the mortality rate was higher in patients with high cardiac troponin I (cTnI) levels (hazard ratio [HR] 3.61) on admission. Conclusion Our result concluded that measuring cTnI levels on presentation could help predict the severity and outcome in COVID-19 patients. It will allow physicians to triage patients and decrease mortality.

9.
Eur J Clin Invest ; 51(6): e13532, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1115021

ABSTRACT

BACKGROUND: Myocardial injury is a common finding in COVID-19 strongly associated with severity. We analysed the prevalence and prognostic utility of myocardial injury, characterized by elevated cardiac troponin, in a large population of COVID-19 patients, and further evaluated separately the role of troponin T and I. METHODS: This is a multicentre, retrospective observational study enrolling patients with laboratory-confirmed COVID-19 who were hospitalized in 32 Spanish hospitals. Elevated troponin levels were defined as values above the sex-specific 99th percentile upper reference limit, as recommended by international guidelines. Thirty-day mortality was defined as endpoint. RESULTS: A total of 1280 COVID-19 patients were included in this study, of whom 187 (14.6%) died during the hospitalization. Using a nonspecific sex cut-off, elevated troponin levels were found in 344 patients (26.9%), increasing to 384 (30.0%) when a sex-specific cut-off was used. This prevalence was significantly higher (42.9% vs 21.9%; P < .001) in patients in whom troponin T was measured in comparison with troponin I. Sex-specific elevated troponin levels were significantly associated with 30-day mortality, with adjusted odds ratios (ORs) of 3.00 for total population, 3.20 for cardiac troponin T and 3.69 for cardiac troponin I. CONCLUSION: In this multicentre study, myocardial injury was a common finding in COVID-19 patients. Its prevalence increased when a sex-specific cut-off and cardiac troponin T were used. Elevated troponin was an independent predictor of 30-day mortality, irrespective of cardiac troponin assay and cut-offs to detect myocardial injury. Hence, the early measurement of cardiac troponin may be useful for risk stratification in COVID-19.


Subject(s)
COVID-19/blood , Cardiomyopathies/blood , Mortality , Troponin I/blood , Troponin T/blood , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Odds Ratio , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
10.
Eur J Clin Invest ; 51(5): e13531, 2021 May.
Article in English | MEDLINE | ID: covidwho-1115019

ABSTRACT

BACKGROUND: Mid-regional pro-atrial natriuretic peptide (MR-proANP) is a strong prognostic marker in several inflammatory, respiratory and cardiovascular conditions, but has not been studied in COVID-19 yet. METHODS: This prospective, observational study of patients with COVID-19 infection was conducted from 6 June to 26 November 2020 in different wards of a tertiary hospital. MR-proANP, N-terminal pro-brain natriuretic peptide (NT-proBNP) and high-sensitive cardiac troponin I levels on admission were collected and tested for their association with disease severity and 28-day mortality. RESULTS: A total of 213 eligible patients with COVID-19 were included in the final analyses of whom 13.2% (n = 28) died within 28 days. Median levels of MR-proANP at admission were significantly higher in nonsurvivors (307 pmol/L IQR, [161 - 532] vs 75 pmol/L [IQR, 43 - 153], P < .001) compared to survivors and increased with disease severity and level of hypoxaemia. The area under the ROC curve for MR-proANP predicting 28-day mortality was 0.832 (95% CI 0.753 - 0.912, P < .001). An optimal cut-off point of 160 pmol/L yielded a sensitivity of 82.1% and a specificity of 76.2%. MR-proANP was a significant predictor of 28-day mortality independent of clinical confounders, comorbidities and established prognostic markers of COVID-19 (HR 2.77, 95% CI 1.21 - 6.37; P = .016), while NT-proBNP failed to independently predict 28-day mortality and had a numerically lower AUC compared to MR-proANP. CONCLUSION: Higher levels of MR-proANP at admission are associated with disease severity of COVID-19 and act as a powerful and independent prognostic marker of 28-day mortality.


Subject(s)
Atrial Natriuretic Factor/blood , COVID-19/blood , Mortality , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Troponin I/blood , Aged , Aged, 80 and over , Case-Control Studies , Cause of Death , Female , Hospitalization , Humans , Hypoxia/blood , Male , Middle Aged , Prospective Studies , ROC Curve , SARS-CoV-2 , Severity of Illness Index
11.
Int J Med Sci ; 18(6): 1474-1483, 2021.
Article in English | MEDLINE | ID: covidwho-1089156

ABSTRACT

Background: For coronavirus disease 2019 (COVID-19), early identification of patients with serious symptoms at risk of critical illness and death is important for personalized treatment and balancing medical resources. Methods: Demographics, clinical characteristics, and laboratory tests data from 726 patients with serious COVID-19 at Tongji Hospital (Wuhan, China) were analyzed. Patients were classified into critical group (n = 174) and severe group (n= 552), the critical group was sub-divided into survivors (n = 47) and non-survivors (n = 127). Results: Multivariable analyses revealed the risk factors associated with critical illness in serious patients were: Advanced age, high respiratory rate (RR), high lactate dehydrogenase (LDH) level, high hypersensitive cardiac troponin I (hs-cTnI) level, and thrombocytopenia on admission. High hs-cTnI level was the independent risk factor of mortality among critically ill patients in the unadjusted and adjusted models. ROC curves demonstrated that hs-cTnI and LDH were predictive factors for critical illness in patients with serious COVID-19 whereas procalcitonin and D-Dimer with hs-cTnI and LDH were predictive parameters in mortality risk. Conclusions: Advanced age, high RR, LDH, hs-cTnI, and thrombocytopenia, constitute risk factors for critical illness among patients with serious COVID-19, and the hs-cTnI level helps predict fatal outcomes in critically ill patients.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/pathogenicity , Troponin I/metabolism , Aged , COVID-19/pathology , Critical Illness , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Middle Aged , Prognosis , Retrospective Studies
12.
Clin Biochem ; 90: 8-14, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1056472

ABSTRACT

BACKGROUND: The spectrum of Coronavirus Disease 2019 (COVID-19) is broad and thus early appropriate risk stratification can be helpful. Our objectives were to define the frequency of myocardial injury using high-sensitivity cardiac troponin I (hs-cTnI) and to understand how to use its prognostic abilities. METHODS: Retrospective study of patients with COVID-19 presenting to an Emergency Department (ED) in Italy in 2020. Hs-cTnI was sampled based on clinical judgment. Myocardial injury was defined as values above the sex-specific 99th percentile upper reference limits (URLs). Most data is from the initial hospital value. RESULTS: 426 unique patients were included. Hs-cTnI was measured in 313 (73.5%) patients; 85 (27.2%) had myocardial injury at baseline. Patients with myocardial injury had higher mortality during hospitalization (hazard ratio = 9 [95% confidence interval (CI) 4.55-17.79], p < 0.0001). Multivariable analysis including clinical and laboratory variables demonstrated an AUC of 0.942 with modest additional value of hs-cTnI. Myocardial injury was associated with mortality in patients with low APACHE II scores (<13) [OR (95% CI): 4.15 (1.40, 14.22), p = 0.014] but not in those with scores > 13 [OR (95% CI): 0.48 (0.08, 2.65), p = 0.40]. Initial hs-cTnI < 5 ng/L identified 33% of patients that were at low risk with 97.8% sensitivity (95% CI 88.7, 99.6) and 99.2% negative predictive value. Type 1 myocardial infarction (MI) and type 2 MI were infrequent. CONCLUSIONS: hs-cTnI at baseline is a significant predictor of mortality in COVID-19 patients. A value < 5 ng/L identified patients at low risk.


Subject(s)
COVID-19/epidemiology , Cardiomyopathies/epidemiology , Troponin I/blood , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/mortality , Cardiomyopathies/mortality , Emergency Service, Hospital , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Myocardial Infarction/epidemiology , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2
13.
JACC Cardiovasc Imaging ; 13(11): 2330-2339, 2020 11.
Article in English | MEDLINE | ID: covidwho-701945

ABSTRACT

Objectives: This study evaluated cardiac involvement in patients recovered from coronavirus disease-2019 (COVID-19) using cardiac magnetic resonance (CMR). Background: Myocardial injury caused by COVID-19 was previously reported in hospitalized patients. It is unknown if there is sustained cardiac involvement after patients' recovery from COVID-19. Methods: Twenty-six patients recovered from COVID-19 who reported cardiac symptoms and underwent CMR examinations were retrospectively included. CMR protocols consisted of conventional sequences (cine, T2-weighted imaging, and late gadolinium enhancement [LGE]) and quantitative mapping sequences (T1, T2, and extracellular volume [ECV] mapping). Edema ratio and LGE were assessed in post-COVID-19 patients. Cardiac function, native T1/T2, and ECV were quantitatively evaluated and compared with controls. Results: Fifteen patients (58%) had abnormal CMR findings on conventional CMR sequences: myocardial edema was found in 14 (54%) patients and LGE was found in 8 (31%) patients. Decreased right ventricle functional parameters including ejection fraction, cardiac index, and stroke volume/body surface area were found in patients with positive conventional CMR findings. Using quantitative mapping, global native T1, T2, and ECV were all found to be significantly elevated in patients with positive conventional CMR findings, compared with patients without positive findings and controls (median [interquartile range]: native T1 1,271 ms [1,243 to 1,298 ms] vs. 1,237 ms [1,216 to 1,262 ms] vs. 1,224 ms [1,217 to 1,245 ms]; mean ± SD: T2 42.7 ± 3.1 ms vs. 38.1 ms ± 2.4 vs. 39.1 ms ± 3.1; median [interquartile range]: 28.2% [24.8% to 36.2%] vs. 24.8% [23.1% to 25.4%] vs. 23.7% [22.2% to 25.2%]; p = 0.002; p < 0.001, and p = 0.002, respectively). Conclusions: Cardiac involvement was found in a proportion of patients recovered from COVID-19. CMR manifestation included myocardial edema, fibrosis, and impaired right ventricle function. Attention should be paid to the possible myocardial involvement in patients recovered from COVID-19 with cardiac symptoms.


Subject(s)
Coronavirus Infections/therapy , Edema, Cardiac/diagnostic imaging , Magnetic Resonance Imaging, Cine , Pneumonia, Viral/therapy , Ventricular Dysfunction, Right/diagnostic imaging , Adult , COVID-19 , China , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Edema, Cardiac/etiology , Edema, Cardiac/pathology , Female , Fibrosis , Humans , Male , Middle Aged , Myocardium/pathology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Predictive Value of Tests , Remission Induction , Retrospective Studies , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right
14.
Int J Cardiol Heart Vasc ; 29: 100557, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-505668

ABSTRACT

At the end of 2019, a viral pneumonia disease called coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2), emerged in Wuhan, China. This novel disease rapidly spread at an alarming rate that as a result, it has now been declared pandemic by the World Health Organization. Although this infective disease is mostly characterized by respiratory tract symptoms, increasing numbers of evidence had shown considerable amounts of patients with cardiovascular involvements and these were associated with higher mortality among COVID-19 patients. Cardiac involvement as a possible late phenomenon of the viral respiratory infection is an issue that should be anticipated in patients with COVID-19. Cardiovascular manifestation in COVID-19 patients include myocardial injury (MI), arrhythmias, cardiac arrests, heart failure and coagulation abnormality, ranging from 7.2% up to 33%. The mechanism of cardiac involvement in COVID-19 patients involves direct injury to myocardial cells mediated by angiotensin-converting enzyme 2 (ACE2) receptors as suggested by some studies, while the other studies suggest that systemic inflammation causing indirect myocyte injury may also play a role. Combination of proper triage, close monitoring, and avoidance of some drugs that have cardiovascular toxicity are important in the management of cardiovascular system involvement in COVID-19 patients. The involvement of the cardiovascular system in COVID-19 patients is prevalent, variable, and debilitating. Therefore, it requires our attention and comprehensive management.

15.
Ann Clin Biochem ; 57(3): 202-205, 2020 05.
Article in English | MEDLINE | ID: covidwho-125531

ABSTRACT

The novel coronavirus SARS-CoV-2 causes the disease COVID-19, a severe acute respiratory syndrome. COVID-19 is now a global pandemic and public health emergency due to rapid human-to-human transmission. The impact is far-reaching, with enforced social distancing and isolation, detrimental effects on individual physical activity and mental wellbeing, education in the young and economic impact to business. Whilst most COVID-19 patients demonstrate mild-to-moderate symptoms, those with severe disease progression are at a higher risk of mortality. As more is learnt about this novel disease, it is becoming evident that comorbid cardiovascular disease is associated with a greater severity and increased mortality. Many patients positive for COVID-19 demonstrate increased concentrations of cardiac troponin, creating confusion in clinical interpretation. While myocardial infarction is associated with acute infectious respiratory disease, the majority of COVID-19 patients demonstrate stable cTn rather than the dynamically changing values indicative of an acute coronary syndrome. Although full understanding of the mechanism of cTn release in COVID-19 is currently lacking, this mini-review assesses the limited published literature with a view to offering insight to pathophysiological mechanisms and reported treatment regimens.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Troponin/blood , Betacoronavirus , Biomarkers/blood , COVID-19 , Humans , Pandemics , SARS-CoV-2
16.
JACC Case Rep ; 2(9): 1284-1288, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-125202

ABSTRACT

A 29-year-old man tested positive for COVID-19 and developed acute respiratory distress syndrome. While mechanically ventilated, his electrocardiogram showed inferior ST-segment elevations, with normal serial cardiac troponin I and transthoracic echocardiograms. He was treated conservatively, with complete clinical recovery and resolution of his electrocardiographic abnormalities. (Level of Difficulty: Beginner.).

17.
JACC Case Rep ; 2(9): 1326-1330, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-116771

ABSTRACT

A 67-year-old woman presented with upper respiratory symptoms and was diagnosed with coronavirus disease-2019 (COVID-19). She was found to have a large hemorrhagic pericardial effusion with echocardiographic signs of tamponade and mild left ventricular impairment. Clinical course was complicated by development of takotsubo cardiomyopathy. She was treated with pericardiocentesis, colchicine, corticosteroids, and hydroxychloroquine, with improvement in symptoms. (Level of Difficulty: Intermediate.).

SELECTION OF CITATIONS
SEARCH DETAIL